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Abstract 17 

The association between climate variability and episodic events, such as the antecedent moisture 18 

conditions prior to wildfire or the cooling following volcanic eruptions, is commonly assessed 19 

using Superposed Epoch Analysis (SEA). In SEA the epochal response is typically calculated as 20 

the average climate conditions prior to and following all event years or their deviation from 21 

climatology. However, the magnitude and significance of the inferred climate association may be 22 

sensitive to the selection or omission of individual key years, potentially resulting in a biased 23 

assessment of the relationship between these events and climate. Here we describe and test a 24 

modified double-bootstrap SEA that generates multiple unique draws of the key years and 25 

evaluates the sign, magnitude, and significance of event-climate relationships within a 26 

probabilistic framework. This multiple resampling helps quantify multiple uncertainties inherent 27 

in conventional applications of SEA within dendrochronology and paleoclimatology. We 28 

demonstrate our modified SEA by evaluating the volcanic cooling signal in a Northern 29 

Hemisphere tree-ring temperature reconstruction and the link between drought and wildfire 30 

events in the western United States. Finally, we make our Matlab and R code available to be 31 

adapted for future SEA applications. 32 

 33 

1. Introduction 34 

Superposed Epoch Analysis (SEA) is a statistical method used to identify the link between 35 

discrete events and continuous time or spatiotemporal processes and test the probability of such 36 

an association occurring by chance (Haurwitz & Brier, 1981). SEA has been widely applied in 37 

climatology and dendroclimatology to test for the impact of volcanic eruptions on climate (e.g. 38 

Esper et al., 2013; Kelly et al., 1996; Kelly & Sear, 1984; Lough & Fritts, 1987; Taylor et al., 39 

1980; Trouet et al., 2018), the significance of soil moisture and climate conditions (e.g. ENSO, 40 

PDO) on the occurrence of forest fires (e.g. Baisan & Swetnam, 1990; Gedalof et al., 2005; 41 

Hessl et al., 2004; Schoennagel et al., 2005; Swetnam, 1993; Swetnam & Betancourt, 1998; 42 

Swetnam et al., 2016), and to evaluate tree growth response to drought events (e.g. Lévesque et 43 

al., 2014; Martín-Benito et al., 2008; Orwig & Abrams, 1997; Pederson et al., 2014; Woodhouse, 44 

1993) and insect defoliation (Flower et al., 2014; Nola et al., 2006; Pohl et al., 2006). 45 

 46 

SEA requires two independent datasets. The first is an ‘event list’. These ‘events’ are usually 47 

discrete in time, such as years of volcanic eruptions or the precisely dated years of fire-scars in 48 

the annual rings of trees. The second variable is usually a long, continuous, and evenly sampled 49 
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timeseries (e.g. climate observations or paleoclimate reconstructions). The underlying hypothesis 50 

of SEA is that the ‘events’ either cause or are themselves a response to the characteristics of the 51 

continuous timeseries, and that the identification of the sign, magnitude, and timing of that 52 

response may be optimised by averaging across all events. To evaluate this, first, a ‘composite 53 

matrix’ is made by drawing fixed windows of consecutive observations from the continuous 54 

timeseries that span years before, during, and after the event. The mean of this composite matrix, 55 

or its deviation from climatology is then calculated as the epochal response. Finally, the 56 

statistical significance of this response is determined using randomisation schemes to evaluate 57 

the result against a null hypothesis to determine how likely the observed response would have 58 

occurred by chance (Haurwitz & Brier, 1981). The compositing and averaging process serves as 59 

a filter that enhances the high-frequency response signal of interest while minimising noise 60 

(D'Arrigo et al., 1993). This technique also accounts for long-term drift, or low frequency 61 

variability that may be present. For example, using SEA one can infer that volcanic eruptions 62 

cause widespread northern hemisphere cooling (e.g. Anchukaitis et al., 2017; Briffa et al., 1998; 63 

Sear et al., 1987; Stoffel et al., 2015), or that fire-events are associated with anomalously dry soil 64 

moisture conditions (e.g. Hessl et al., 2016; Kipfmueller et al., 2017). 65 

 66 

Within the SEA literature the two commonly used randomisation schemes to determine response 67 

significance are ‘random bootstrapping’ (Haurwitz & Brier, 1981) and ‘block reshuffling’ 68 

(Adams et al., 2003). While both rely on Monte Carlo type bootstrapping approaches to 69 

determine confidence interval thresholds, they test for different hypotheses (Anchukaitis et al., 70 

2010). The random bootstrap takes multiple random draws from the entire ‘event’ timeseries by 71 

generating ‘pseudo key years’, and then computes statistics of random variability within the 72 

‘response’ dataset to determine significance thresholds. The block reshuffling method on the 73 

other hand creates random surrogate composite matrices by first permuting the original ‘event’ 74 

composite matrix, and then computing distributions based on this random shuffling of the 75 

‘response’ anomalies for each event series (Wanliss et al., 2018). Prior to the reshuffling, the 76 

serial autocorrelation of the ‘response’ timeseries is used to determine the block length sampled, 77 

helping preserve the data’s autocorrelation structure. By resampling in blocks, exclusively within 78 

the composite matrix, the statistics and autocorrelation of the composite matrix are preserved 79 

while destroying preferred pre and post-event temporal ordering, ensuring that the resulting 80 

confidence intervals take into account the confounding influence of temporal structure in the 81 

time series (Adams et al., 2003). 82 

 83 

While the compositing and averaging process in SEA serves as a high-frequency filter to 84 

increase the signal-to-noise ratio of the mean epochal response, it has multiple drawbacks. The 85 

first is that one or more events might have an outsized leverage on the mean response value 86 

across epochs (Adams et al., 2003). The second relates to noise added to the SEA results due to 87 

dating uncertainty in the events (Sigl et al., 2015; Toohey & Sigl, 2017) or the timeseries, along 88 

with the potential lack of temporal resolution in the proxy to resolve the seasonality of the event 89 

or the response. The dating uncertainty means that there might be an offset between the event 90 

response (e.g. as post-volcanic winter warming (Zambri et al., 2017)) and what is recorded in the 91 

seasonal climate proxies like as tree-rings and corals. Another source of uncertainty in SEA is 92 

the a priori subjective definition of what constitutes an event and the effect this choice has on the 93 

SEA response. For example, the threshold to use to define a volcanic event (e.g. radiative forcing 94 

larger than Pinatubo, Tambora, etc.), or the percentage cut-off used to define fire events (e.g. 95 
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10% scarred trees, 20% scarred trees etc.) tend to be subjective choices. Finally, the simple 96 

averaging of the response matrix in conventional SEA relies on the implicit hypothesis that all 97 

event signals are equal when in reality each event (e.g. volcanic eruption, fire year) is unique. 98 

Additionally, even the response to the same kind of event might differ due to natural variability 99 

within the climate system modulated by pre-event background states (Esper et al., 2013; Fischer 100 

et al., 2007; Zanchettin et al., 2019). 101 

 102 

Here in this study we describe a modified double-bootstrap SEA framework that first generates 103 

multiple unique draws of the key year list itself. We first used this method in Rao et al. (2017) to 104 

evaluate the impact of volcanic eruptions on post-volcanic hydroclimate over Europe and North 105 

Africa. This double-bootstrap SEA methodology describes the event response in a probabilistic 106 

framework and therefore explicitly and quantitatively addresses the uncertainties in SEA 107 

mentioned above.   108 

 109 

2. Data 110 

We test our modified SEA method using two datasets. The first is a recent tree ring 111 

reconstruction of Northern Hemisphere May-though-August mean temperature spanning 750-112 

2011 C.E. (N-TREND -Wilson et al., 2016). The second is a compilation of annually resolved 113 

tree ring based fire scar records from the western United States (Trouet et al., 2010). The original 114 

authors of both papers and datasets also conducted SEA analysis, demonstrating that Northern 115 

Hemisphere temperatures cool in the years immediately following large tropical volcanic 116 

eruptions (Wilson et al., 2016), and wildfire years in the western US coincide with drought years 117 

(Trouet et al., 2010). Hence, we focus on the implementation of our SEA method and do not seek 118 

to reinterpret the physical mechanisms behind the event signals. 119 

 120 

The tropical eruptions key years used to evaluate the N-TREND temperature reconstruction 121 

response to volcanism come from the eVolv2k database (Toohey & Sigl, 2017). We chose a total 122 

of 20 tropical eruptions, between 30°S-30°N and 1100-2011 C.E. that have a peak northern 123 

hemisphere aerosol optical depth (AOD) greater than 0.08 as eruption key years (Table 1). 124 

Figure 1 shows the N-TREND temperature reconstruction between 1100-2011 C.E. along with 125 

markers for these volcanic eruptions. For reference, we also include markers for 9 northern 126 

hemisphere extratropical volcanic eruptions between 30°N-90°N (Table 1) with northern 127 

hemisphere AOD > 0.08 from Toohey and Sigl (2017). Following Trouet et al. (2010), we 128 

categorised a year as a fire-year when at least 10 percent of samples are scarred in a minimum of 129 

two trees, resulting in a total of 98 candidate fire key years between 1342-1952 C.E. 130 

 131 

The record for the western US used to evaluate drought conditions during fire-event epochs 132 

comes from an area-weighted spatial average of the Living Blended Drought Atlas (LBDA) 133 

(Cook et al., 2010; Cook et al., 2004) between 124°W to 109°W and 35°N to 50°N, covering all 134 

four regional composite fire scar series used in Trouet et al. (2010). The LBDA is a gridded 135 

spatial reconstruction of mean June through August (JJA) Palmer Drought Severity Index (PDSI 136 

- (Palmer, 1965). Figure 2a shows the percentage of all the western US sites within the Trouet et 137 

al. (2010) dataset that records a fire for each year between 1300-2000 C.E. along with the total 138 

number of sites. The lower panel Figure 2b is a timeseries of the area-weighted PDSI for the 139 

western US, with negative and positive values indicating dry and wet conditions respectively. 140 

 141 
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3. Methods 142 

The first step of SEA analysis is to develop a composite matrix of event responses. In traditional 143 

SEA, rows of the composite matrix each correspond to a key or event year, while columns 144 

contain are the data from the time series prior to, during, and following each event (Haurwitz & 145 

Brier, 1981). The number of columns depends on the window length of interest. In both 146 

examples we chose a window length of 21 years, spanning from 5 years pre-event to 15 years 147 

post-event. Year 0, the sixth column in the matrix, therefore corresponds to either a volcanic 148 

event year or a fire year. However, unlike conventional SEA, where only one composite matrix 149 

is developed for all key year responses, we developed 1,000 unique versions of composite 150 

matrices by drawing unique subsets of key years at random without replacement from the key 151 

year list.  152 

 153 

We draw unique subsets without replacement for two reasons. The first is to avoid biasing each 154 

iteration of the composite matrix by drawing the same year multiple times within one draw, and 155 

the second is to avoid biasing the final epochal mean probability distribution by making multiple 156 

draws with the same combination of key years. The total number of volcanic key years is 20, and 157 

the total number of fire key years is 98. For the volcanic forcing SEA experiment, we made 158 

1,000 composite matrices using unique random combinations of 10 volcanic key years without 159 

replacement, while for the fire-event drought SEA we made 1,000 unique composite matrices 160 

drawing of 50 random fire key years without replacement. While the choice of 10 volcanic and 161 

50 fire year years is relatively arbitrary, these numbers represent approximately half the total 162 

number of key events in the dataset, thus giving us reasonable estimates of spread in the 163 

response. 164 

 165 

We normalised the rows of each composite matrix by subtracting the five-year pre-event mean. 166 

This subtraction reduces the impact low-frequency climate variability has on the final epochal 167 

mean, and the likelihood that one large event leverages and biases the overall epochal mean of 168 

the composite matrix (Adams et al., 2003). Other approaches to normalization include, i. 169 

calculating the epochal response as zscores reflecting scaled deviations as done within the R (R 170 

Core Team, 2017) package ‘dplR’ (Bunn, 2008), and ii. calculating the departures of the climate 171 

series from average climate conditions as done in the R package ‘burnr’ (Malevich et al., 2018). 172 

Finally, for each for the 1,000 unique composite matrices we calculated the epochal mean by 173 

averaging across each lag, and calculated the final response as the 5th percentile, median, and 95th 174 

percentile of the 1,000 epochal mean responses.  175 

 176 

We determined the statistical response of the 5th percentile, median, and 95th percentile epochal 177 

mean responses using both random bootstrapping and block reshuffling (Adams et al., 2003; 178 

Davi et al., 2015). In both methods, we generated 10,000 iterations of pseudo-composite 179 

matrices. For the random bootstrap this was done by drawing sets of pseudo key-years sampled 180 

over the entire timeseries. To be consistent with how the final epochal response was calculated, 181 

the pseudo- composite matrices were generated by drawing 10 and 50 pseudo key years at 182 

random from the Wilson et al. (2016) temperature and Cook et al. (2010) PDSI reconstructions 183 

respectively. Each set of block reshuffling surrogate matrices was generated by first drawing one 184 

of the 1,000 composite matrices at random and then randomly reshuffling blocks of the chosen 185 

matrix. The length of each block was determined as twice the e-folding distance of the first-order 186 
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auto-correlation (AR1) of the temperature and PDSI reconstructions, calculated as -2/ln(ρ); 187 

where ρ is the value of the AR1 coefficient (Adams et al., 2003). 188 

 189 

These pseudo composite matrices were normalised in the same fashion as the actual composite 190 

matrices by subtracting the five-year pre-event mean. Finally, the 1st, 5th, 10th, 90th, 95th, and 99th 191 

percentiles of the epochal means of the pseudo composite matrix were calculated as the 192 

significance thresholds needed to be exceeded for the SEA response to be deemed statistically 193 

significant. 194 

 195 

4. Results and Discussion 196 

Our SEA on the northern hemisphere May-August temperature reconstruction shows strong and 197 

significant (p<0.01) cooling in the years following a volcanic eruption and lasting up to 6 years 198 

post-eruption (Figure 3 and Wilson et al., 2016). This result is consistent regardless of whether 199 

we use the random bootstrap or block reshuffling methods to test for significance. The strongest 200 

cooling response of ~0.47°C, relative to the five-year pre-event mean, occurs one-year post-201 

eruption (i.e. year t+1). The bootstrapped 5th and 95th percentile confidence intervals of the 202 

response also show significant cooling (p<0.01). The 5th and 95th percentile response represents 203 

the degree of variability in the volcanic response based on choices of 1,000 unique sets of 10 key 204 

years from a total of 20 potential key years. That the 95th percentile response in year t+1 also 205 

shows significant cooling (p<0.01) indicates that even the warmest responses in the post-206 

volcanic period are cooler than what would be expected by random variability. 207 

 208 

SEA on the Trouet et al. (2010) western US fire event dataset shows that fire-events are 209 

coincident with anomalously dry years (Figure 4 and Trouet et al., 2010). Median JJA PDSI in 210 

fire years is ~ -0.7 units lower than the five-year pre-event mean PDSI. The 95th percentile of 211 

PDSI conditions in fire years, which represents a choice of ‘wetter’ fire-event responses, 212 

calculated by drawing 1,000 sets of 50 unique fire key years at random without replacement from 213 

the total list of 98 possible fire years is significant at p<0.05 while the median and 5th percentile 214 

response are significant at p<0.001. In both examples the block bootstrapping and block 215 

reshuffling methods produces similarly wide confidence intervals (Figure 3 & 4). This suggests 216 

that, at least in these two cases scrambling the composite matrix to destroy temporal ordering 217 

generates similar variability as sampling from the entire timeseries.  218 

 219 

Our choice of drawing the 1,000 unique composite matrices from 10 unique volcanic key years 220 

at random out of a possible 20 years, and 50 fire key years at random from a total of 98 was 221 

based on a choice to keep the number of event years in each unique draw small enough to be able 222 

to sample the variability in the response, but at the same time large enough that the epochal mean 223 

of each composite matrix can still serve as a high-frequency filter to separate common signal 224 

from noise. However, we do note that this choice of the number of key years in each draw (10 225 

eruptions out of 20; 50 fire years out of 98), does impart an additional source of uncertainty the 226 

SEA procedure, as the width of the shaded uncertainty intervals in Figure 3 and errorbars in 227 

Figure 4 are functions of the sample size chosen in the bootstrap. While we use the median 228 

response to evaluate statistical significance, the presented shaded uncertainty intervals and 229 

errorbars provide a better estimate of variability in the response as is inherent in the data than is 230 

provided in conventional SEA. For example, by calculating the variability in the post-volcanic 231 

climate response (Figure 3), and evaluating the variability in drought conditions coincident with 232 
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fire years (Figure 4), we more effectively account for the fact that not all volcanic events produce 233 

the same climate response, and that the magnitude of drought conditions coincident with fire 234 

events can be quite variable. Conventional SEA omits this variability by presenting the final 235 

response as the simple average of the normalised composite matrix or as symmetric error bars 236 

around the mean, which might not be representative of the actual variability, or skewness in the 237 

event response distribution. 238 

 239 

This variability in response is also evident when evaluating the temperature reconstruction in 240 

Figure 1 and the JJA PDSI reconstruction in Figure 2. For example, warm temperatures are 241 

reconstructed by Wilson et al. (2016) in 1586 following the eruption of Colima in 1585. The 242 

reasons for the variability in the volcanic response likely include the location of the volcano, 243 

stratospheric ejection height, the physical characteristics and spatial distribution of sulphate 244 

aerosols,  the background climate state, the seasonality of the eruption, and the possibility that 245 

the timing of peak forcing might not coincide with the climate-sensitivity of the climate-proxy 246 

used (Guillet et al., 2017; Pausata et al., 2016; Zanchettin et al., 2019). The variability in drought 247 

conditions during fire event years is even more evident. The error bars around PDSI conditions 248 

coincident with fire-events in year t+0 is negatively skewed. This can be explained by the 249 

number of fire events that take place during dry versus wet years (Figure 2). Of the 98 fire 250 

events, 65 occur when PDSI is less than 0 while 33 events occurred when PDSI is greater than 0. 251 

Evaluating fire events during more extreme PDSI values, 17 fire events occur when PDSI is less 252 

than -2, while only 3 fire events occur when PDSI is greater than 2. Reasons for variability in 253 

drought conditions during fire-event years include the influence of fuel availability and ignition 254 

sources on wildfire occurrence (Abatzoglou & Williams, 2016; Bessie & Johnson, 1995; Gedalof 255 

et al., 2005; Littell et al., 2009; Littell et al., 2016; Trouet et al., 2010; Westerling et al., 2003) 256 

uncertainties in the underlying drought reconstruction (Cook et al. 2010), and any uncertainties 257 

in defining wildfire event years based on the existing fire scar network (Falk et al., 2011). All of 258 

these observations highlight the contingent and variable nature of event-climate associations. 259 

 260 

Our double-bootstrap SEA makes multiple draws of subsets from the key year list and thus 261 

presents SEA results in a way that attempts to explicitly account for the influence of these 262 

processes during key years. Additionally, by treating key years as random variables we more 263 

formally acknowledge that the key year dates for volcanic eruptions might be uncertain (Toohey 264 

& Sigl, 2017), and that the definition of event years as used here (eruptions with a peak northern 265 

hemisphere AOD > 0.08; at least 10% scarred trees with a minimum of 2 samples) is somewhat 266 

arbitrary. While in this study we conducted SEA on two selected timeseries, it is possible to 267 

expand this to evaluate SEA responses within a spatial context as well. For example, in Rao et al. 268 

(2017) we applied this double-bootstrap approach to evaluate the post-volcanic drought response 269 

and associated variability over Europe and northern Africa. An additional benefit is that our SEA 270 

approach allows us to place additional constraints on the calculation of the epochal mean to 271 

avoid the selection of closely spaced volcanic eruptions such as, 1452/1457 and 1808/1815, and 272 

fire-years in each unique draw. This reduces bias in the final estimated epochal response by 273 

minimising the number of overlapping windows. In the end, even though SEA is only a 274 

statistical test of association between the event list and the variable of interest (Haurwitz & Brier, 275 

1981), our implementation of a bootstrapped resampling of the key year list provides a statistical 276 

framework to explicitly quantify the variability in this association while explicitly 277 

acknowledging the uniqueness of each event.  278 
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Tables 297 

 298 

Table 1. Tropical volcanic eruptions key years used for Superposed Epoch Analysis (SEA) and 299 

Northern Hemisphere marker years highlighted in Figure 1. Dates are derived from Toohey and 300 

Sigl (2017). Names are mentioned only for identified eruptions. 301 

Tropical volcanic eruptions Northern Hemisphere Extratropical eruptions 

1107  1182 

1170 1200 

1229 1210 

1257 Rinjani, Samalas, Indonesia 1329 

1285 1477 Bárðarbunga, Veiðivötn, Veidivatnahraun, Iceland 

1344 1667 Shikotsu, Tarumai, Japan 

1452 1729 

1457 1783 Grimsvötn, Lakagígar, Laki, Iceland 

1585 Colima, Mexico 1912 Novarupta, Katmai, Alaska, USA 

1600 Huaynaputina, Peru  

1694  

1640 Parker, Philippines   

1808  

1815 Tambora, Indonesia  

1831 Babuyan Claro, Philippines  

1835 Cosigüina, Nicaragua  

1883 Krakatau, Indonesia  

1902 Santa Maria, Guatemala  

1982 El Chichón, Mexico  

1991 Pinatubo, Philippines   

 302 

  303 
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Figures 304 

 305 
Figure 1. A temporal subset of the Northern Hemisphere May-August summer temperature reconstruction between 306 

1100-2011 C.E. from Wilson et al. (2016). Red * symbols indicate tropical volcanic eruption key years (see Data) 307 

used in our Superposed Epoch Analysis (SEA) to evaluate the Northern Hemisphere summer temperature response 308 

to volcanism. Blue * symbols indicate large extratropical Northern Hemisphere eruptions. Tropical volcanic key 309 

years are shifted by +1 years to better align with the cooling response (see Results). Y-axis is the anomaly in °C with 310 

respect to temperatures between 1961-1990. 311 

  312 
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  313 

 314 
Figure 2. Fire event and drought history for the western US between 1300-2005 C.E. (a) Percentage of trees from 315 

the Trouet et al. (2010) western US compilation that record a fire in a given year (vertical black bars) along with the 316 

total number of recording trees (in blue). Red triangles are the final set of 98 candidate fire event key years chosen 317 

using a cut-off of at least 10% of scarred samples with a minimum of 2 recording trees. (b) Area-weighted spatial 318 

average of mean June-August Palmer Drought Severity Index (JJA PDSI) for the western US (124°W-109°W an 319 

35°N-50°N) from the Living Blended Drought Atlas (Cook et al., 2010). The 98 red triangle symbols are the same 320 

fire event key years from part (a).   321 
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 322 
Figure 3. Superposed Epoch Analysis (SEA) showing May-August northern hemisphere temperature cooling 323 

response to tropical volcanism between 1100-2011 C.E. Uncertainty intervals are 5th and 95th percentiles of 324 

the temperature response, while the horizontal lines indicate the threshold required for epochal anomalies to be 325 

statistically significant using random bootstrapping (a) and block bootstrapping (b). 326 

 327 

  328 
Figure 4. SEA showing that western US fire-events are coincident with dry June-August PDSI conditions as 329 

reconstructed by the Cook et al. (2010) Living Blended Drought Atlas in year t+0. Similar to Figure 3, 330 

uncertainty intervals are 5th and 95th percentiles of the drought conditions during fire events, while the 331 

horizontal lines indicate the threshold required for epochal anomalies to be statistically significant using 332 

random bootstrapping (a) and block bootstrapping (b). 333 

 334 
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